EXAM ADVANCED ALGEBRAIC STRUCTURES, January 24th, 2022, 16:00–18:00 (CEST).

- Put your name on every sheet of paper you intend to hand in.
- Please provide complete arguments for all of your answers. The exam consists of 3 problems. You obtain 3 points for free, and up to 27 points for the problems you are supposed to hand in. In this way you will score in total between 3 and 30 points; your final grade is obtained by dividing this by 3.
- (1) This is an exercise concerning "squares modulo 221". Note that $221 = 13 \times 17$, and although during this course we discussed Legendre symbols $\left(\frac{a}{p}\right)$ for any odd prime p, we did not introduce something like $\left(\frac{a}{221}\right)$. Nevertheless:
 - (a) [3 points] Show that $\varphi \colon \mathbb{Z}/221\mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ given by $\varphi(a \mod 221) = \left(\left(\frac{a}{13} \right), \left(\frac{a}{17} \right) \right)$ is well-defined.
 - (b) [1+2 points] with φ as above, show that

 $\varphi(a \mod 221) = (1,1) \iff a \mod 221$ is in $(\mathbb{Z}/221\mathbb{Z})^{\times}$ and is a square.

- (c) [3 points] Show that 3 mod 221 and 5 mod 221 in $(\mathbb{Z}/221\mathbb{Z})^{\times}$ are non-squares and that their product 15 mod 221 is a non-square as well.
- (2) We consider the splitting field K of $x^9 1$ over \mathbb{Q} .
 - (a) [1 point] Show that $\sqrt{-3} \in K$.
 - (b) [3 points] Show that only one field M exists such that both $\mathbb{Q} \subset M \subset K$ and $[M:\mathbb{Q}] = 2$.
 - (c) [2 points] Compute $[K(\sqrt{5}) : \mathbb{Q}]$.
 - (d) [3 points] Explain why $K(\sqrt{5})$ is a Galois extension of \mathbb{Q} with an abelian Galois group $\operatorname{Gal}(K(\sqrt{5})/\mathbb{Q})$.
- (3) We consider \mathbb{Q} , the set of rational numbers with the usual addition +, as a module over \mathbb{Z} in the natural way. So scalar multiplication $\mathbb{Z} \times \mathbb{Q} \to \mathbb{Q}$ is the usual multiplication $(n, r) \mapsto nr$.
 - (a) [3 points] Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z})$ consists of the zero-map only (hint: if f is such a homomorphism and f(1) = n and $m \in \mathbb{Z}$ is nonzero, observe that $m \cdot f(\frac{1}{m}) = n$).
 - (b) [3 points] Show that \mathbb{Q} is not a free \mathbb{Z} -module. (For this, it might help to observe that in \mathbb{Q} every element can be divided by any nonzero integer.)
 - (c) [3 points] Is \mathbb{Q} a projective \mathbb{Z} -module?