exam Advanced Algebraic Structures, January 24th, 2022, 16:00-18:00 (CEST).

- Put your name on every sheet of paper you intend to hand in.
- Please provide complete arguments for all of your answers. The exam consists of 3 problems. You obtain 3 points for free, and up to 27 points for the problems you are supposed to hand in. In this way you will score in total between 3 and 30 points; your final grade is obtained by dividing this by 3 .
(1) This is an exercise concerning "squares modulo 221 ". Note that $221=13 \times 17$, and although during this course we discussed Legendre symbols $\left(\frac{a}{p}\right)$ for any odd prime p, we did not introduce something like $\left(\frac{a}{221}\right)$. Nevertheless:
(a) [3 points] Show that $\varphi: \mathbb{Z} / 221 \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ given by $\varphi(a \bmod 221)=\left(\left(\frac{a}{13}\right),\left(\frac{a}{17}\right)\right)$ is well-defined.
(b) $[1+2$ points $]$ with φ as above, show that $\varphi(a \bmod 221)=(1,1) \Longleftrightarrow a \bmod 221$ is in $(\mathbb{Z} / 221 \mathbb{Z})^{\times}$and is a square.
(c) [3 points] Show that $3 \bmod 221$ and $5 \bmod 221$ in $(\mathbb{Z} / 221 \mathbb{Z})^{\times}$are non-squares and that their product $15 \bmod 221$ is a non-square as well.
(2) We consider the splitting field K of $x^{9}-1$ over \mathbb{Q}.
(a) $[1$ point $]$ Show that $\sqrt{-3} \in K$.
(b) [3 points] Show that only one field M exists such that both $\mathbb{Q} \subset M \subset K$ and $[M: \mathbb{Q}]=2$.
(c) $[2$ points $]$ Compute $[K(\sqrt{5}): \mathbb{Q}]$.
(d) [3 points] Explain why $K(\sqrt{5})$ is a Galois extension of \mathbb{Q} with an abelian Galois $\operatorname{group} \operatorname{Gal}(K(\sqrt{5}) / \mathbb{Q})$.
(3) We consider \mathbb{Q}, the set of rational numbers with the usual addition + , as a module over \mathbb{Z} in the natural way. So scalar multiplication $\mathbb{Z} \times \mathbb{Q} \rightarrow \mathbb{Q}$ is the usual multiplication $(n, r) \mapsto n r$.
(a) [3 points] Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$ consists of the zero-map only (hint: if f is such a homomorphism and $f(1)=n$ and $m \in \mathbb{Z}$ is nonzero, observe that $m \cdot f\left(\frac{1}{m}\right)=n$).
(b) [3 points] Show that \mathbb{Q} is not a free \mathbb{Z}-module. (For this, it might help to observe that in \mathbb{Q} every element can be divided by any nonzero integer.)
(c) [3 points] Is \mathbb{Q} a projective \mathbb{Z}-module?

